Solutions to Question Sheet 3, Limits III. v1. 2019-20

Divergence

1. i) Let f be defined on a right-hand open interval of a € R (i.e. on
(a,a+ n) for some n > 0). Write out the K -¢ definition for

zl—lgl-i-f(J:) = oo

Let f be defined on a left-hand open interval of @ € R (i.e. on (a — 7, a)
for some 1 > 0). Write out the K -¢ definition for

lim f(x) = —o0.

r—a—

ii) Let f be defined for all sufficiently large positive x. Write out the
K - X definitions for each of the following limits,

lim f(x) = 400, lim f(x) = —o0,

Tr——+00 r—r—+00

iii) Let f be defined for all sufficiently large negative x. Write out the
K - X definitions for each of the following limits.
lim f(z) =400, lim f(z) = —o0.

T—r—00 T—r—00

Solution i. The K -¢ definitions of one-sided limits being infinite are

lim f(z) =400:VK >0,36>0,Vz:a<zx<a+d = f(z) > K.

r—a+

lim f(z)=—-00:VK <0,3§>0,Vz:a—-—d<zx<a = f(zr)<K.

T—a—

ii. The K - X definitions of limits at 400 being infinite are

lim f(z) =400:VK >0,3X >0,Vz:2>X = f(z)> K.

T—>+00

lim f(z)=—-00:VK <0,3X>0Vz:2>X = f(z) < K.

T—+00



iii. The K - X definitions of limits at —oo being infinite are

lim f(z)=40c0:VK >0,3X <0,Vz:2<X = f(z)> K.

T——00
lim f(r)=—-00: VK <0,3X <0,Vz:2<X = f(r) < K.
T——00
. 1) Write
Glo) = -
x?—1
as partial fractions for x # 1 or —1.
ii) Prove that if x > 1 then
1
G(x) > —/—.
@) > 51

Thus verify the K -0 definition (seen in Question 1i) of

lim G(z) = +o0.

rz—1+

iii) Prove, that if 0 < z < 1 then

1 1

Thus show that the K -0 definition (seen in Question 1i) of

i Glo) = o

is verified by choosing § = min (1,—1/(2K — 1)) for any given K < 0.
iv) Evaluate (so there is no need to verify the definition)

lim G(x) and lim G(x).

T——1+4 T——1—

v) Evaluate
lim G(z) and  lim G(x),

T—r+00 T——00



if they exist.
vi) Sketch the graph of G.

Solution i) The Partial Fraction is found starting from

r A . B
2—-1 z—-1 z+1

You may not have previously seen the following method to find the
unknown A and B. Multiply up by x — 1 to get
B(zx—-1) z(z-1) x

r+1  (22-1) x+1

Let x — 1 to get A = 1/2. Similarly you can get B = 1/2. Thus
1 1 1
G(x)_ﬁ{x—1+x+1}'

Note in the next two parts we look at the values of G(z) as © — 1
from above and below. Of the two terms in the partial fraction form
of G(z) it is the 1/(z — 1) term that dominates for such . We are left
to simply bound the remaining factor 1/(x + 1).

ii) To show the limit is +00 we have to show that G(x) is larger than
any given K > 0, which we do by looking for lower bounds for G(x).

If x > 1 then = + 1 is positive in which case

1 . P 1
1S positive, 1.e.

>0
1+ 1+2x

Thus we have a lower bound for G:
1 1 1 1 1 1
== - -
Gz) 2{x—1+x+1}>2{x—1+0} oy W

Let K > 0 be given, choose 6 = 1/(2K) > 0 and assume 1 < z < 1+49.
Then 0 <z —1 < ¢ in which case




and hence, from (1),

1 1 1
C@)> 5o % raeny N

Thus we have verified the K -§ definition (seen in Question 1) of the
one-sided limit

lim G(z) = +o0.

T—1+
iii) To show the limit is —oo we have to show that G (z) is less than
any given K < 0, which we do by looking for wupper bounds for G(x).
Given K < 0 we are told to take § = min (1,1/(1 — 2K)). Assume

1—90 < x < 1. then, since 6 < 1, we have 0 < x < 1 and thus
l<zxz+1<2and

1

< 1.
z+1

L <
2
Thus we have an upper bound for G:
1 1 1 1 1 1 1
Ga) 2{m—1+m+1}<2{x—1+ } oo T2 @

Next § < 1/(1 — 2K) implies that

B 2K
1-2K  1-2K°

1l>z>1—-6>1-—

Hence oK )
1> T
0>a—1>-7"5% 1- 2K’

which, inverted, gives

Substituting back into (2) we find, for 1 —§ <z < 1,

G(z) < ={—(1-2K)+1} = K,



as required. Hence we have verified the K -9 definition of

lim G(x) = —o0.

r—1—

iv) Without detailed proofs note that for = close to —1 it is the term
1/(x 4+ 1) in the partial expansion of G (z) that is unbounded. The
other term, 1/(x — 1), will be bounded.

For the right hand limit at —1, if —1 < x < 0 then x +1 > 0, i.e.
is positive. So 1/(x + 1) will become arbitrarily large and positive as
x approaches —1 from above and thus

lim G(z) = +oc.

z——14

For the left hand limit at —1, if x < —1 then x +1 < 0 i.e. is
negative. Thus 1/(x + 1) will become arbitrarily large and negative as
x approaches —1 from below and hence
lim G(x) = —oc.
rz——1—
EXTRA Though you were not asked in the question to verify the K - ¢
definitions of the last two limits we do so here.

For x — —1+ let K > 0 be given, choose § = min (1,1/(2K +1)) >0
and assume —1 < z < —1+ 9. Since § < 1 we have —1 < x < 0, i.e.

—2 < x—1< —1 in which case

1
—= >

> —1.
2 r—1

But —1 < x < —1+4 ¢ also implies 0 < x 4+ 1 < ¢, in which case
1 1

> —.
r+1" 6

Combine these lower bounds in

1 1 1 1 1
Glz) = §{x_1+x+1}>§{‘”5}
Y S
= 2 1/(2K + 1)

} since § < 1/(2K +1)

I
=



Thus, for all K > 0 we can find a 6 > 0 such that if -1 <x < -1+
then G(x) > K. This is the K -0 definition of lim,, 1, G (z) = +o0.

For x - —1— let K < 0 be given, choose § = —1/(2K) > 0 and
assume —1 — 0 < x < —1. Then, with no restriction from § we have

z — 1 < —2 in which case

But —1 — § <z < —1 also implies —6 < x + 1 < 0 in which case

1 1

< .
z+1 )

Combine these upper bounds in

-3t e ebfor () -x

Thus, for all K < 0 we can find a 6 > 0 such that if -1 -0 <z < —1
then G (z) < K. This is the K - § definition of lim,, ;_ G(z) = —oc0.

(v) For large z the function G(z) “looks like”

22z
Hence, without detailed proofs, we can still say that the limits exist
and

lim G(z)= lim G(x)=0.

T—>+00 T——00

vi) The graph of G is

. Follow the example in the notes, lim,_,; 2/(z — 1)* = oo, to verify the
K - § definitions of

2

i) xlgrgg @13 +oo and i) mlgrjg 137 - _



Solution i) To show the limit is +0co0 we have to show the function is
larger than any given K > 0, which we do by looking for lower bounds
for the function.

Let K > 0 been given, choose = min (1,2/\/?) . and assume 0 <
|z + 3] < 0.

Then
0<1 and O0<|z+3|<d = —-4d<zr<-2
— 4<2°<16 (3)

x? 4

= 5 > 5.
(2 +37% (z+3)

having divided the first inequality of (3) by the positive (z + 3)*. Next

p , 4
0<— and O<|z+3|<d = (z+3)<—
VK | | ( )_K

4
- 5 > K.
(x +3)

Hence 6 = min (1, 2/\/F> and 0 < |z + 3| < § together imply

x? 4

> >
(z+3)° (x+3)° "~

Thus we have verified the K -0 definition of
. x?
lim ———— = +00
r——3 (x + 3)

7



ii) To show the limit is —oo we have to show the function is less than
any given K < 0, which we do by looking for upper bounds for the
function.

Let K < 0 be given. Choose 6 = min (1, \/—2/K> > 0. Note that

because K < 0 we have —2/K > 0 and we can take the square root.
Assume 0 < |z + 3] < 4.

First,
<1 and 0<z+3|<d = —-4d<zr<-2 (4)
2

- 2 < - 29 (5)

(x +3) (x+3)
having divided the first inequality of (4) by the positive (z 4 3)*. Next

5<~/—2 d 0<|z+3/<d = (+3)2<—2

< o an x x %

(z + 3)° 2

2
e 5 < K. (6)
(x +3)

Combining (5) and (6) we have, for § = min <1, \/—2/K> and 0 <

|z + 3| <, that
x 2

7 < 5 < K
(x +3) (x +3)
Thus we have verified the K -0 definition of

5 =

lim
r——3 (x + 3)

. Define H : R — R by

1
2 +1

H(z) =

+ x.

Prove by verifying the K - X definitions that

lim H(z) =400 and lim H(z) = —o0.

T—+400 T——00



Sketch the graph of H.

Solution To prove lim,_,, H(x) = +00, let K > 0 be given. Choose
X =K.

Assume z > X.

Remember, we hope to prove H(z) > K so we look for lower bounds
on H (x). For the present result it suffices to note that

H(z) = +x >z,

2+ 1

where we are simplifying the expression by “throwing away” the com-
plicated part 1/ (22 4+ 1) > 0. Continuing,

Hxz)>xz>X=K.
Thus we have verified the K - X definition of lim,_, ., H(z) = +00.

To prove lim,, o, H(z) = —oo let K < 0 be given. Choose X = K —1.
Assume z < X.

We hope to prove H(z) < K and so we look for upper bounds on
H(x). This means that we cannot simply throw away the 1/(z% + 1)
term. Instead we use the fact that 1/(2? + 1) < 1 for any x € R. Then

H(z) = +tr<l4+r<l+X =K,

|

by the choice of X. Thus we have verified the K -X definition of
lim, , - H(z) = —oc.



The graph of H(z) is

Limit Rules

5. Using the Limit Rules evaluate
i)
3z +4x +1
im————,
z—0 $2 + dx + 3
ii)
o 32 +4x+1
lim ———,
z—oo 12 +4x + 3
iii)
3z +4x +1
im —.
a——1 12 4+4r + 3

Note When using a Limit Rule you must write down which Rule you
are using and you must show that any necessary conditions of that
rule are satisfied.

Solution i) The rational function

32+ 4 +1
22+ 4z + 3

is well-defined at 0 (in particular the denominator is not 0) so by the
Quotient Rule for limits

e +4r+1  limy o (32® +4x+1) 1

I - _—
250 22 + 4z +3  limyo (22 +4x13) 3

10



ii) We cannot apply the Quotient Rule for limits directly since the
polynomials on the numerator and denominator diverge as x — +00.
Instead, divide top and bottom by the largest power of x to get

3r2 +4x +1 . 344/ +1/2?
im —— = lim
z—too 12 + 4z + 3 o400 1 +4/x + 3 /22

im0 (3+4/x+1/2?) (7)

lim, 4o (1 +4/x 4+ 3/22)

3
= 1—3.

Here we have used the Quotient Rule at (7), allowable since both limits
exist and the one on the denominator is non-zero.

iii) We cannot apply the Quotient Rule for limits since the denominator
is 0 at x = —1. This means that the denominator has a factor of x + 1
and in fact

P’ +4r+3=(x+1)(z+3).

For the limit of the rational function to exist the numerator will also
have to be zero at x = —1, i.e. have a factor of x + 1. In fact

3v +dr+1=(z+1)Bx+1).

Thus
3z? 4+ 4z +1 . (z+1)Bz+1)
im ———— = lim
z—-1 g2 44+ 3 e—-1 (z+ 1) (z+3)
3r+1

11m .
z——-1 1+ 3

We can now apply the Quotient Rule for limits since both lim,_,_; (3x + 1)
and lim,, 1 (x 4 3) exist and the second one is non-zero. Hence

) 3z +4rx+1  lim,, ;(Bz+1) -2 ]
im = - _ 1.
a——1 12 +4x + 3 lim, , 1 (z + 3) 2

11



6. (i) What is wrong with the argument:

. . ™ . . . ™
lim 23 sin <—> = lim 2z® x lim sin (—)
x—0 x x—0 x—0 x

by the Product Rule

= 0 x lim sin <E>

x—0 €T

(ii) Evaluate

Solution i) You may only use the Product Rule for limits when both
individual limits exist. Here we know from Question 1 Sheet 2 that
lim,_,o sin (7/x) does not exist, so we cannot apply the Product Rule
(even if the answer it gives is correct!)

ii) We might guess that the limit is 0.

Let € > 0 be given, choose § = £'/3 and assume z : 0 < |z — 0| < 6.
Then

’x?’ sin (f) - O‘ = ’:c?’ sin <E)’ < |#°|  since [sin (/)] <1,
T T
= |z <6®  since | —0| <&

< (51/3)3 —¢  since § = /3,
Hence we have verified the definition of
lim 22 sin (E> =0.

x—0 xX

Alternatively you could use the Sandwich Rule on

—|z)* < 2%sin <E> <zl
T

12



Exponential and trigonometric examples

7. Recall that in the lectures we have shown that

ef —1
lime*=1 and lim
x—0 x—0 x

=1.

Use these to evaluate the following limits which include the hyperbolic
functions.

(i)

. sinhz
lim ,
x—0 x
ii)
tanh z
lim ,
x—0 x
iii)
coshz —1
im ——-:
x—0 1‘2
Solution i) Start from
sinhz e*—e™®
T 2z

The guiding principle is to manipulate this so we see a function whose
limit we already know. For example (e” — 1) /z. For this reason we
‘add in zero’ in the form 0 = -1+ 1:

sinh x B ex—l—l—l—e_m_l et —1 +e_x et —1
T N 2x 2 T 2 €T
B 1 /e -1 +1 et —1
D) x Qe x ’

Now use the Sum and Product Rules for limits to get

. sinhzx 1 . et —1 1 . et —1
lim = —lim 4+ — lim
=0 I 2 -0 T 21lim,_,o €% 2—0 T

_ ! + L_ 1

2 2 7



ii) With the intention of using known results write

tanh z B sinh z " 1
r coshzx’

Before we apply the Quotient Rule for limits we need to note that

et +e 1 1 1 1
he=——=-(e"+— |1+ ) =1
coshx 5 2(6 +em)—>2(+1> ;

as x — 0. Because this exists and is non-zero we can apply the Quotient

Rule to get .
. tanhz lim,_,, S0h2 1

lim = — r = _=1.

=0 lim, ,gcoshz 1

We have used Part i in the numerator.

iii) Apply the same idea of ‘multiplying by 1’ as used for (cosx —1)/x?
in lectures: For x # 0,

coshz — 1 B coshz — 1 " coshx +1 B cosh?z — 1
x? B x? coshz +1/)  22(coshx + 1)
sinh 2\ ? 1
= ( ) since cosh?z — sinh?z = 1,
T coshx +1

5 1
— 1 ><§ as x — 0,

by the Product and Quotient Rules and Part i. Thus

. coshz —1 1
lim ———— = —.
x—0 5(]2 2

The graphs of these functions are not particularly interesting, but I
have plotted the graph of y = sinhz/z in black, y = tanhx/z in blue
and of y = (coshz — 1) /2? in red:

14



8. 1) Assuming that e* > x for all x > 0 verify the e- X definitions of

lim e * =0 and lim e* =0.
Tr—+00 T——00

Deduce (using the Limit Rules) that

lim tanhz =1 and lim tanhz = —1.
T—+00 T——00

Sketch the graph of tanh x.

Solution i) Let € > 0 be given. Choose X = 1/¢ > 0. Assume z > X.
By the assumption in the question we have e* > x so
1 1

1
0<e’"=—<-<==-—==¢.
c e X (1/¢) c

Thus we have verified the - X definition of lim, ,,, e ™ = 0.

Let € > 0 be given. Choose X = —1/¢ < 0. Assume z < X. This
means that x is negative, so can be written as r = —y wherey > —X =
1/e. Then, as above,

1 1 1
f=eV<-< = =&.

y  (=X)  (1/e)

Thus we have verified the - X definition of lim,_,_. e* = 0.
ii) By definition

tanhz = = )
coshx eT+4e®

15



e For x — +o0 divide top and bottom by e” so

1— 6—290

tanhy = ——.
14 e 2

By the Product Rule for limits, part i of this question gives

2
lim e % = lim (e_g”)2 = ( lim e"”) = 0.

T—+00 T—r+00 T—r+00

Then, by the Quotient Rule for limits,

i . ~ 1 — —2x
lim tanh = 1n1 St ( ) =1
z—+400 lim, 4 o0 (1 + 6722)

T

e For x+ — —oo divide top and bottom by e™ so
e —1
tanhx = ———.
e?r 4+ 1

Again the Product Rule for limits and part i gives

lim e** = 0.
r—r—00

Then, by the Quotient Rule for limits,

lim, 4o (€2° — 1) 1

lim tanh =
z—1>I—Poo an imx*}+oo (62I + 1)

16



Finally, we can use the results just found to plot the graph of y =

tanh x :
+
0.51
-6 _4 ) 0 2 < 4 6
-0.5T
-1t
Additional Questions
9. i. Prove that ) 5
x x
e —1—z———— ‘x‘
2 6

for |z| < 1/2.

Hint Use the method seen in the notes where it was shown that
le” — 1 —z| < |2?] for |z| < 1/2.

ii. Deduce

et —1l—z—2?/2 1
lim = —.
x—0 1’3 6
iii. Use Part ii. to evaluate

sinhxz — z

lim

x—0 1‘3

Solution i) Start from the definition of an infinite series as the limit
of the sequence of partial sums, so

17



Then, by the triangle inequality, (applicable since we have a finite

sum),
N—4 N—4 N—
17 3 1 ,
> S 1 Z [f
| =
— +4) = (J =1 =

since (j+4)! > 4! for all j >0,

11—V
T U ST

on summing the Geometric Series, allowable when |z| # 1. In fact we
have |z| < 1/2 < 1, which means
1— oV Lo
-z —1—|z] 1-1/2

Hence
N-3

)
Z(J+4'

J=0

g [N

for all N > 0. Therefore, since the limit of these partial sums exists

the limit must satisfy

2 2
2 Gy ST
Combined with (8) we have
e’”—l—x—x—2—x—3 _z|x|4
2 3! 4]

ii) Divide through the result of part i by |23| to get

" —1—z—2%/2 1

3 6

2
< 4 lel < lal )

l

for |z| < 1/2.

18



To prove the limit in the question we can verify the definition. Let
e > 0 be given, choose § = min (1/2,¢) and assume 0 < |z — 0] < 4.

Since § < 1/2, the inequality (9) holds for such z. Thus

e —1—xz—12%/2

3

1
— =< < <e.
5 || <e

Hence we have verified the -6 definition of

T 1 —x—2%/2 1
lime r—z/ = —.
x—0 1‘3 6

(10)

Alternatively we can use the Sandwich Rule for (9) opens out as

1 H<e””—1—az:—x2/2<1+H
- — |z =+ |z].
6 a3 6

Let x — 0 when the upper and lower bound — 1/6. Thus, by the
Sandwich Rule, (10) follows.

iii) From the definition of sinh z we have

sinhx —z e*—e™® -2z

3 223

This has to be manipulated so that we see ¢* — 1 — x — 2?/2 and can
thus use (10). Do this by “adding in zero” in the form

0=—2?/2— (- (-2)*2),

to get
ef—e -2 _ (e"—1-a-— 22/2) — (e — 1 — (—x) — (—2)* /2)
23 223
_ (e —1l-x—a?)2) (e -1 (—2) — (—2)*/2)
= 923 + 5 (_x)3 .

19



Let # — 0 (in which case —z — 0) when, by the assumption of the
question, we get

sinhz — x 1. (e*—1—x—2%/2)
im—— = —=lim
z—0 ;C3 2 z—0 (1:3
1 ] — (=) — (—z)*/2
T (=) — (=)' 2
2 —z—0 2(_3:')
B 1><1—1—1><1—1
276 276 6

~
w

Again, the graph of y = (sinhx — z) /2* is not particularly ‘exciting’:

10. Recall that in the lectures we have shown that

in6
sinf _ o

=g

Use this to evaluate (without using L’Hopital’s Rule)
i)
lim —
530 tan §’
ii)
sin  — tan 6

lim 3
0—0 0

Solution i) Again guided by the limits we already know write

. . Ocost . cosf limg_,q cos
P T 0 smO A (O)  fimg 5l
( 9 ) -0 —p

20



by Quotient Rule for limits, allowable since both limits exist and the

limit on the denominator is non-zero. Hence
0 1

m =—-=1.
6—0 tan 6 1

Graphically, y = z/ tanx :

_on -z —x/q /2

ii) The limit we already know from lectures is of (cos@ — 1) /6% so write

sinf — tan 6 B tanf [cosf —1
63 0 62 '

The “trick” used in lectures to evaluate the limit of this it is to multiply
top and bottom by cosf + 1 to get

tan® [cos?f — 1 1 _ _tan9 AN 1
0 62 cosf+1 0 0 cosf + 1

1 (sinf\® 1
N cos 6 0 cosf +1

Use the Product and Quotient Rules for limits to deduce

. sinf — tan@ 1
lim ———— = — .
0—0 0 2

21



Graphically, y = (sinz — tanz) /2? :

)

—7/2 [ | [ /2
172

22



